Multi-specific therapeutic antibodies
Slide Presentation is Available on Teneobio’s Website
Teneobio Overview

- Proprietary transgenic rats for human antibody discovery
 - UniRat and Omniflic
- High throughput sequence-based human antibody discovery engine
 - Next-gen sequencing + custom bioinformatics
 - High throughput recombinant expression and functional screening
- Multi-valent therapeutics with superior efficacy
 - Anti-CD3 T-cell redirection platform
 - Anti-BCMAxCD3 lead program, Phase 1 complete 2021
 - Anti-PSMAxCD3, Anti-CD19xCD3 INDs 2020
 - IL2Rβ/γ agonists
 - T-cell co-stimulation platform
 - Anti-CD38 enzyme inhibitor for Autoimmunity/Inflammation
- Product development partnerships
 - UniAbs for CAR-Ts, ADC’s, nanoparticles, viral delivery, etc.
 - Multi-target discovery through IND-enabling capabilities
Human Ig Transgenic Rats for Antibody Discovery

UniRat
- KO of rat Ig loci
- Fully human VH, Heavy chain antibody (UniAb) or domain antibody (UniDab)

OmniFlic
- KO of rat Ig loci
- Fully human VH, fixed light chain IgG

Flexible and robust human multi-specific antibodies

UniAb™
- 100aa

UniDab™

FlicAb™
Our platform is a unique combination of:

- Antibody repertoire deep sequencing
- Custom bioinformatics analysis
- High-throughput vector assembly
- Recombinant expression and screening

<table>
<thead>
<tr>
<th>DEEP SEQUENCING</th>
<th>ANALYSIS</th>
<th>EXPRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Immunization</td>
<td>2 B-cell isolation and mRNA purification</td>
<td>6 High-throughput expression and screening</td>
</tr>
<tr>
<td>2 Deep sequencing of VH regions</td>
<td>3 Bioinformatic analysis</td>
<td>5 High-throughput vector assembly</td>
</tr>
</tbody>
</table>

Harris et al. Front. Immunol. 24 April 2018
Screening design and strategy

- **Primary screen**: diverse CDR3 sequence families, **broad epitope coverage**
- **Secondary screen**: family members of primary hits, **optimize function**
Sequence-based Antibody Discovery

We discover 100X more antibodies 3X faster than traditional approaches

Total number of discovery projects	100
Total number of targets	39
Total number of animals	1,346
Total number of NGS sequence reads generated	1,817,332,666
Total number of unique antibodies screened	39,260
Total number of antigen-specific antibodies	11,778

100% Success rate
High Throughput Screening Allows Early Selection for Manufacturability

<table>
<thead>
<tr>
<th>UniRat immunization, titers, repertoire sequencing, bioinformatics analysis, gene assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniAbs</td>
</tr>
<tr>
<td>~200 UniAbs (~100 families)</td>
</tr>
<tr>
<td>10-20 UniAbs (5-10 families)</td>
</tr>
<tr>
<td>~100 UniAbs (2-4 families)</td>
</tr>
<tr>
<td>~20 UniAbs (2-4 families)</td>
</tr>
<tr>
<td>~12-16 UniAbs</td>
</tr>
<tr>
<td>6-8</td>
</tr>
<tr>
<td>4-6 UniAbs</td>
</tr>
</tbody>
</table>

Early testing for developability

<table>
<thead>
<tr>
<th>Stage</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary screen (96well supernatants)</td>
<td>ID ag+ CDR3 families (poly-reactivity)</td>
</tr>
<tr>
<td>Family characterization (24well purified)</td>
<td>ID ag+ families with other desired functions (%HMW, Tm, Tagg)</td>
</tr>
<tr>
<td>Diversity screen (96well supernatant)</td>
<td>Expand range of fxn activity (screen add’l family members)</td>
</tr>
<tr>
<td>Secondary screen (24well purified)</td>
<td>In-depth comparison of family members (%HMW, Tm, Tagg)</td>
</tr>
<tr>
<td>Secondary screen (5-20mg purified)</td>
<td>Additional functional assessment, protein analytics (Thermal Stability after stress)</td>
</tr>
<tr>
<td>Final lead evaluation</td>
<td></td>
</tr>
</tbody>
</table>
Corporate Strategy Drives Teneobio’s Non-Dilutive Strategy

- **Diversification is Important**
 - Oncology: T-Cell Engagement, T-Cell Co-Stimulation
 - Autoimmunity: CD38 Enzyme Inhibition
 - Infectious Disease: Polyomavirus, Hepatitis B Virus

- **Focus on problems that demand a multi-specific or HCA approach**: Teneo’s T-Cell Engagers

- **Be Collaborative**: CD38 Enzyme Inhibition
 - Academic Researchers
 - Service Providers
 - Biotech
 - Physicians

- **Pursue High-Risk, High-Reward Programs**: Anti-Polyoma Domain Antibody Strings

- **Grant Writing/Execution as a Crucible**
Teneobio’s Pipeline: Diversification through Non-Dilutive Funding

<table>
<thead>
<tr>
<th>Program</th>
<th>Discovery</th>
<th>Pre-clinical</th>
<th>IND</th>
<th>Phase I</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNB-383B (BCMA x CD3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNB-486 (CD19 x CD3)</td>
<td></td>
<td></td>
<td></td>
<td>2020</td>
</tr>
<tr>
<td>TNB-585 (PSMA x CD3)</td>
<td></td>
<td></td>
<td></td>
<td>2020</td>
</tr>
<tr>
<td>FRa x CD3</td>
<td></td>
<td></td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>ST4 x CD3</td>
<td></td>
<td></td>
<td></td>
<td>2022</td>
</tr>
<tr>
<td>CD79b x CD3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD38 enzyme inh</td>
<td></td>
<td></td>
<td></td>
<td>2021</td>
</tr>
<tr>
<td>IL2/15R agonist</td>
<td></td>
<td></td>
<td></td>
<td>2022</td>
</tr>
<tr>
<td>Polyomavirus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B Virus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ND = Not disclosed)
Teneobio’s T-Cell Engagement Platform

Better Bispecific T-Cell Engagers Using UniAbs
~75% of BsAbs in development use an anti-CD3 derived from SP34, OKT3, or UCHT1 (Wu et al. Pharm. and Ther. 2017)

Our goal: discover new anti-CD3 antibodies that in bispecific format are well tolerated and efficacious
 ▪ Efficient tumor cell lysis
 ▪ Minimal CRS, T-cell exhaustion and AICD
 ▪ Low immunogenicity
 ▪ Long Half-Life
T cell activation occurs in discrete stages based on TCR-pMHC complex formation

- Faroudi et al. PNAS 2003
- Purbhoo et al. Nature Imm. 2004

- Mature immune synapse is not necessary for cytolytic activity
- 2 TCR-pMHC complexes sufficient for inducing cytotoxicity = threshold 1
- >10 necessary for full synapse formation and cytokine release = threshold 2
- Can new CD3 antibodies be developed that stimulate threshold 1 but not threshold 2?

Window of engagement to stimulate tumor cell lysis without cytokine release
TNB-486 (anti-CD19/CD3) is Efficacious With Low Cytokine Release
TNB-496 Is Efficacious In Vivo

In Vivo Efficacy of TNB-486 in Disseminated Murine Model of Burkitt Lymphoma

TNB-486 results in tumor regression in Burkitt Lymphoma disseminated model.
Modular Bispecific Antibody Development

Anti-CD3 T-cell activator

High affinity anti-Tumor antigen

TAA+ Tumor cells + T-cells

BsAb-mediated
 • T-cell activation,
 • Cytokine release
 • Tumor cell lysis

Trinklein et al. mAbs 20 Feb 2019
Teneobio’s Platform has been Validated Both Solid and Liquid Tumors

- BsAb-mediated tumor lysis for multiple different tumor associated antigens
TNB-Bispecific Molecules on Track for IND Throught 2021

TNB-383B Phase 1 initiated Q2 2019, Multiple Myeloma
Stable Cell Line Yield: 4.7 g/L

TNB-486, IND in July 2020, Lymphoma
Stable Cell Line Yield: 4.5 g/L

TNB-585, IND in November 2020, Prostate cancer
Stable Cell Line Yield: 7.6 g/L

TNB-###, IND in Q3 2021, Ovarian cancer

Grant Supported
Teneobio T-cell Engager Platform

- Novel proprietary fully human anti-CD3 antibodies
 - Novel epitope, large range of affinities
- One-of-a-Kind, Plug-and-Play, Stable Protein Chemistry
- Unique MOA
 - Retained Anti-Tumor Efficacy
 - Improved Safety: Dramatically Reduced Cytokine Secretion
 - Reduced Treg stimulation, Reduced Exhaustion
- Low immunogenicity
- Long half-life
- High affinity/avidity TAA binding

Confidential
Teneobio’s CD38 Enzyme Inhibitor

Cutting Edge Autoimmunity Therapy via Metabolic Regulation

Potent Inhibition of hCD38 by Biepitopic UniAbs

CD38_A
Competition group 3

CD38_B
Competition group 1

Synergy

Tetravalent CD38_A_B

Human CD38 Hydrolase Activity

% of max activity

Antibody [nM]

UniAb A
UniAb B
UniAb A + B

Human CD38 Hydrolase Activity

% of max activity

Antibody [nM]

UniAb A + B
TetrAb A_B
CD38 Regulates NMN/NAD+ in Young and Old Mice

Day one
- A68 injection
- Ip, 5 mg/kg

Day three
- 0h - NMN Injection
- 500 mg/kg
- 6h – Euthanasia and tissue collection

Groups
- Young and Old Control, A68, NMN, NMN+A68

Measure
- NAD, NMN, NA

Tissues:
- Spleen
- Liver
- Mesenteric Fat
- Muscle (Gast)
- Inguinal Fat
- Jejuno
- Blood/Plasma
Teneobio’s CD38 Inhibitor: Collaboration to Solve Complex Biology

NAD+ METABOLISM

- HIV
- AUTOIMMUNITY
- COLITIS
- NAD+
- METABOLISM
- INFLAMMATION
- AUTOIMMUNITY
- PREMATURITY AGING
- APLASTIC ANAEMIA
- INFLAMMAGING
- AGING
- CELL EXHAUSTION
- CAR T CELLS
- PULMONARY
- FIBROSIS
- SCLERODERMA
- ENDOTHELIAL DYSFUNCTION
- ISCHEMIC REPERFUSION
- HEART FAILURE

- MAYO CLINIC
- INBELM, FRANCE
- TRANSPANTATION
- INFLAMMATION
- METABOLIC DISORDERS
- MEDICAL UNIVERSITY SOUTH CAROLINA
- BLUE – CD38 BLOCKADE EFFECTIVE IN MOUSE MODELS
- GREEN – SCIENTIFIC LITERATURE, ANIMAL MODELS
- ORANGE – DISEASE AREAS

NATIONAL INSTITUTE ON AGING

NORTHWESTERN MEDICAL SCHOOL
Teneobio’s CD38 Inhibitor: A Unique Modulator of NAD+

- **TNB-738 Solves Critical Problems with Existing CD38i Therapies**
 - Existing Inhibitory Antibodies are Cytotoxic
 - Small Molecule Inhibitors Enter the CNS
 - NMN Supplementation Does Not Increase Tissue NAD+, and Increases NAD Degradation Products

- **TNB-738 is a Potent CD38 Inhibitor with Long Half-Life and Good Manufacturability**
 - Sustained Increases in Tissue NAD+
 - Stable Protein Chemistry
 - Robust Process for Manufacturing/Purification

- **Broad Collaboration with Metabolic Experts Enables Bench-to-Bedside Transition**
 - CD38 Inhibition Improves Diverse Disease States
 - Independent Validation of MOA
 - Provides Foundation for Clinical Development with IND in 2021.
Teneobio’s Anti-Polyoma Virus Therapy

Novel Domain Antibody Strings to Reach Immune-Priviledged Sites
Antibodies to Treat BK/JC Viral Diseases

- Polyomaviruses Threaten Immune Compromised Patients
 - **BK Nephropathy**: 5-10% of Kidney Transplants, incl. graft loss
 Peak Sales Projection = ~$200M/Year
 - **Progressive Multifocal Leukoencephalopathy (PML)**: up to 5% of HIV pts, 30-50% mortality
 Peak Sales Projection = $550M/Year
 - **Hemorrhagic Cystitis**: Rare complication of marrow transplant, 2-4% mortality
 - **Interstitial Cystitis**: Correlative association with BK. US prevalence ~1,000,000. significant morbidity.
 Peak Sales Projection = $250M+/Year

- No effective treatment for any BK/JC viral disease!

- Antibodies are a Promising Therapeutic Approach
 - **Novartis**: huMAb (MAU 868) against BK virus to treat BK nephropathy; entered Phase 1.
 - **Neurimmune**: huMAb against JC virus to treat PML
 - High dose IVIg has shown limited efficacy
 - *Conventional antibodies cannot enter the urinary space where polyomaviruses replicate.*
Antibodies to Treat BK/JC Viral Diseases

- **Slowly Mutating Viruses**
 - Limited Escape from Antibody Therapy

- **Replicate in the Urinary Space**
 - Inaccessible to Conventional Antibodies
 - Domain Antibodies (UniDAbs) and 2-4 UniDAb ‘strings’ are freely filtered into the Urine

- **Multiple Serotypes Necessitate a Broadly Neutralizing Approach**
 - Teneoseek Enables Identification of Broadly Neutralizing Antibodies
 - *UniDAb Strings can Combine Multiple Specificities in a Single Molecule*
Teneobio’s Anti-Polyoma UniAbs

- 2 Broadly Neutralizing UniAb families
 - <100 pM IC50 against ALL tested PYV strains
 - BK I
 - BK IV
 - JCV WT
 - JCV S293F (PML-inducing mutant)
 - Good Developability
 - Well expressed
 - Tm/Tagg
 - Stable at 37°C for 1 mo.
 - Domain UniAb strings in development

Confidential
Anti-BK/JC UniAbs and Domain UniAb Strings: Summary

- **Validated Scientific Rationale**
 - Multiple huMAbs in development to treat Polyomaviral diseases

- **UniAbs are Uniquely Suited to Combat BK/JC-Mediated Diseases**
 - **Broad Neutralization**: <100 pM IC50 for all tested BK/JC strains
 - **Multivalency**: Expect tetravalent IC50 ~10-100X stronger than bivalent (~5pM-500fM IC50)
 - **Small Size**: UniDAb strings can enter the urine
 - **Excellent Manufacturability**: Grams/L yields anticipated
 - **Customizable Half-Life**: HSA- or Ig-binding
 - **Absence of framework regions**: No STRATIFY cross-reactivity
The Crucible: Grant Writing as a Means towards Better Science

- **Grant Proposal ≈ Detailed TCP**
 - Feasibility
 - Timelines
 - Cost/FTE
 - Gap Analysis: Where do You Need Help?

- **Grants as a Catalyst for Collaboration**
 - Funding to Support Collaborators
 - Scientific Credibility

- **Review Process Validates Approach**
Lessons From Teneobio’s Non-Dilutive Funding Strategy

- **Diversification is Important → Use Grants to Expand Your Pipeline (Especially Early Pipeline)**
 - Oncology: T-Cell Engagement, T-Cell Co-Stimulation
 - Autoimmunity: CD38 Enzyme Inhibition
 - Infectious Disease: Polyomavirus, Hepatitis B Virus

- **Teneo’s T-Cell Engagers → Play to Your Strengths, Find Problems Suited to Your Innovations**

- **CD38 Enzyme Inhibition → Grants Enable, and Thrive on, Collaboration**
 - Academic Researchers
 - Service Providers
 - Biotech
 - Physicians

- **Anti-Polyoma Domain Antibody Strings → Use Grants to Try the Crazy Stuff You’ve Always Wanted to Try!**
 - Grant Writing/Execution as a Crucible